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A self-organized “tipping bucket model” of driven flow in fractured media was employed to study the
degradation of contaminant by a dynamic population of traps representing microbial activity in the subsurface.
For divergent flows, an increase in the degradation rate by an order of magnitude decreased the contaminant
concentration in the exiting drips by at most one-third, but for convergent flows, the increased degradation
rate did not significantly reduce the contaminant concentration.

1. Introduction

The fate of contaminants (e.g., halocarbons) in the subsurface,
especially in the vadose zone (i.e., the unsaturated zone above
groundwater), remains a challenge to predict. Among the
complications is the possibility of nonlinear feedback between
the transport and in-situ degradation of the contaminants.
Contaminants spilled into the vadose zone may react with and
be degraded by communities of native microorganisms resident
throughout the vadose zone, which may themselves also impact
the flow of contaminants.1 Theoretical (i.e., statistical mechanics)
and computational studies2,3 of the reaction-diffusion equations
that describe microbial degradation of contaminants (which were
introduced only once into a diffusive flow in a saturated porous
medium, with a static population of degradation sites) found
that the disorder in the spatial distribution of the degradation
sites strongly influenced the degradation kinetics. Here, we
studied a model of the degradation of contaminants continually
introduced into a driven flow in fractured nonporous unsaturated
media, combined with a dynamic population of microbial
degradation sites. This model is the “tipping bucket model”
(TBM), introduced in refs 4 and 5. The TBM is a variant of the
scale-free “sandpile” model of self-organized criticality.6 In the
TBM, the flow by itself establishes a self-organized dynamic
structure6 (not to be confused with the “self-assembly” of
complex spatial structures, even though this is also sometimes
called “self-organization” in the chemical literature). Here, the
TBM is augmented by the inclusion of tracer contaminants
subject to degradation; the resulting model is a complex and
self-organizing (in the sense discussed in ref 6) chemical reaction

network, in which the microbial degradation sites are strongly
coupled to the flow because they are dynamically activated or
deactivated depending upon the contaminant concentration.
Consequently, predicting the contaminant fate for a given
degradation rate is complicated, so we rely here upon computa-
tions for our first study of such a model.

Of the large effort and literature on this problem, the
following recent work on models4,5,7,8 and experiments9-13

dealing with fracture flows, and on models2,3 and experi-
ments1,14-16 of microbial degradation in the subsurface, provides
a context for this study. There is such a wide variety of
biogeochemical scenarios in which biodegradation can occur
that we ask, “To what extent can scale-free generalizations about
such processes can be drawn?” With this question in mind, we
present here a simple (possibly the simplest) model of the
complicated (and possibly complex) biodegradation scenario in
fractured media. The scale-free nature of the sandpile model6

that underlies our work suggests that the insight extracted from
it may be broadly applicable. Our primary interest is to
determine the sensitivities to variations in the degradation in a
simply understood model, as a first step to bounding the range
of behavior in more realistic scenarios.

This variant of the TBM employs the following assumptions,
the first set concerning the microorganisms and the second
concerning the flow. First, we assume that microbial contami-
nant degradation is due to microorganisms that (i) are pervasive
and long-lived in the subsurface, (ii) employ organic contami-
nants as part (or all) of their food source, (iii) become dormant,
isolated, and possibly planktonic when the food source is low,
under which conditions they do not significantly degrade the
contaminant, but (iv) become active and effectively degrade the
contaminant if they can form communities when the food source
becomes sufficiently rich. We modeled the degradation with
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approximately first-order kinetics at low concentrations, at each
degradation site (or trap). We chose first-order kinetics because
it is common for biodegradation reactions with low concentra-
tions of contaminant. Instead of saturating with zeroth-order
kinetics at high concentrations (as in Michaelis-Menten kinet-
ics), we assume that the microorganisms are poisoned and
degradation ceases from those sites. These assumptions have
been discussed in the literature, for example, refs 2 and 14-
16. Second, we assume that the flow in fractured media can be
convergent as well as divergent. The hypothesis of convergent
flow the former has only recently received experimental
evidence,10 while divergent flow is the more common circum-
stance. We will consider contaminant degradation in both
convergent and divergent flows.

2. Description of the Chemical Reaction Network Model.
2.A. Description of the “Tipping Bucket” Model for the Fracture
Flow. The “tipping bucket model” (TBM) is a cellular automa-
ton similar to the generic directed “sandpile” model6,17,18 but
with the added complications of stochastic singly directed flow
and dynamic overloading.4,5 The TBM idealizes the fracture
network as a regular, two-dimensional array of intersections
arranged on a diamond lattice (Figure 1). Here, we implemented
periodic boundary conditions along the vertical edges of the
network of 50 (horizontal)× 1000 (vertical) buckets. TheΦ
parameter is defined as the fraction of intersections, or buckets,
that are connected to only one or the other but not both of the
neighboring buckets in the row below.Φ ) 0 corresponds to a
maximally biconnected network, while forΦ > 0, the choice

Figure 1. Fragment of the TBM network. The arrows indicate the
direction of the flow when the bucket is tipped.

Figure 2. The Frechet distribution (eq 1) for the thresholds. The
distribution has both a mean and a standard deviation of 10.

Figure 3. Cumulative number of bucket tips for eight million spills. The four panels correspond to cases 1-4, left to right. The color legends
indicate the cumulative number of tips for each bucket and vary between the panels, e.g., the leftmost panel would be all magenta on the scale of
the next three panels.

TABLE 1: Active Trap Populations and Drip Contaminant
Concentrationsa

parameters traps (%) concentrated× 103

case Φ Ω µ 2σ µ 2σ

1 0.0 41 18 9.2 3
10 8 6.2 2

2 0.8 28 8 10 5
10 6 7 4

3 1.0 8 44 14 9.8 2
13 8 7.5 2

4 1.0 20 20 4 23 54
18 4 20 54

a The first column labels the cases, according to the combination of
Φ and Ω parameters employed. Theµ and σ are the sample means
and standard deviations, respectively. For each case, the top and bottom
rows correspond to the slow (γ ) 10-4) and the fast (γ ) 10-3)
degradation rates, respectively. The left-hand pair of the (µ, 2σ) columns
displays results for the active trap population, expressed as the percent
of the total number of buckets. The right-hand pair displays results for
the contaminant concentration of the drips, multiplied by 1000. The
shading indicates exceptions to the otherwise normal distribution of
the fluctuations.
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of which of the two neighboring buckets to connect is random;
once chosen, it remained set for the duration of the simulation.
We added one unit of water to a randomly chosen bucket on
the top row of the network. Each addition corresponds to one
unit time step. Between additions (or spills), the network is
relaxed by tipping the eligible buckets as follows: when the
level of water in a bucketj exceeds its thresholdθj, it tips and
distributes all of its volume to the (one or two) connecting
buckets in the row below; the direction of the flow is always
top to bottom. The relaxation process itself (i.e., the tipping of
the eligible buckets) is considered to be virtually instantaneous
compared with the interval between the spills and will not be
included in the dynamics that we measure; the dynamics of the
flow and reaction kinetics described below in 2.B are measured
only between spills. For convenience in the analysis, we take
the interval between each spill to be the same.

In ref 4 all of the thresholds were set equal to 10, but in ref
5 the added realism of spatially (but not temporally) variable
bucket thresholds within the network was found to be useful,
so we employ the same distribution here. Theθj here were
assigned to each bucket (to remain fixed thereafter), without
spatial correlation, by randomly sampling from the Fre´chet
distribution f, that is, forθ g 0,

This unimodal distribution is a member of the “generalized
extreme value” family of distributions and happens also to
possess convenient scaling properties. Its essential singularity
at the origin ensures a smooth, rapid approach to zero density
there. Its algebraic decay for large thresholds is physical: the
diameter of the fracture aperture is a primary factor for the
threshold,5,7-13 while experiments indicate that the distribution
of fracture apertures has a power-law tail.19 Here, we considered

only one set of parameters (R ) 6.76396 andâ ) 2.52996) for
the Fréchet distribution, which resulted from setting both the
mean threshold (µθ ) 10) and its standard deviation (σθ ) 10).
Figure 2 shows the resulting threshold distribution.

Dynamic overloading occurs when a large volume of fluid
is passed to a small volume intersection and causes the bucket
to split its flow to both intersections (buckets) in the row below
it, even if normally it would only direct the flow singly, that is,
to only one intersection (bucket) in the row below. Overloading
has been observed in experiments.11 The TBM was first
augmented with an overload process in ref 5, and we do so
here, for added realism, by introducing a second threshold
condition at each bucket through introduction of the overload
parameterΩ g 1, constant for the entire network. For each
bucketj, if the bucket receives a loadLj that is larger thanθj

by a factor ofΩ, that is, ifLj > Ω × θj, then the restriction to
flow into only one bucket below (if any) is overridden for that
instance only, so that both of the left and right connecting
buckets below equally receive one-halfLj from j.

We found in ref 5 that as occurrence of dynamic overloading
increases, the model behavior transitions from convergent flow
back to divergent flow comparably to that found in ref 4 for
variations withΦ. The divergent flow with overloading differs
from that forΦ as overloading occurs as a natural consequence
of a heterogeneous field and imposes a dynamic structure where
additional pathways activate or deactivate in time.

The TBM provides a driven flow in fractured media that
becomes a self-organized dynamic structure.4-6 With the
overload process, it exhibits a natural transition between
divergent and convergent flow.4,5 In the next subsection, we
discuss the addition of chemical reactions to the TBM, which
represent the microbial degradation of contaminant, but could
easily be adapted for other models (for example, others recently

Figure 4. The distribution of contaminant concentration in the exiting drips. The bottom and left axes portray the results on a linear scale corresponding
to the “slow” and “fast” degradation rates, respectively: blue and violet (solid) for case 1, yellow and green (circles) for case 2, red and orange
(dashed) for case 3, and black and white (bars) for case 4. The results for cases 1-3 correspond to fits of the normal distribution to the first two
moments (Table 1); the results for case 4 are raw bins from the histogram. The right and top axes portray the same results for case 4 (squares) on
a log-log scale.

f(θ) ) (â/θ)(R/θ)â exp{-(R/θ)â}; R, â > 0 (1)
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have constructed self-organized chemical reaction networks in
different contexts).20,21

2.B. Description of the Contaminant Degradation Model.
With the addition (or spill) of one unit of water to a randomly
chosen bucket on the top row, we also added one unit of
contaminant (a tracer that does not interfere with the flow), but
it was added only to the central bucket on the top row, and
only if that bucket also had been chosen to receive the
added water. The contaminant was quickly diluted into the
network and achieved steady state in the presence of degra-
dation. We modeled the contaminant degradation by initially
placing one trap in each bucket that, when active, removed
contaminant from the bucket via approximate first-order kinetics
as follows: the contaminant in each bucket with a trap was
reduced by a factor of (1- γ), where γ ) 10-4 for slow
degradation, orγ ) 10-3 for fast degradation, at every
spill, irrespective of the amount of water in the bucket, or
whether the bucket had been tipped. The rateγ has dimen-
sions of inverse time (set by the interval between additions of
water) but here, as with all parameters, it has reduced units,
that is, all units are unity. For both of these values, (1- γ)
reasonably approximates the factor exp(-γ) that would result
from exact first-order kinetics,16 while it significantly reduces
the computational burden of the simulation. The trap is
reversibly deactivated whenever the contaminant in that bucket
falls below the activation concentration of 0.01 and irreversibly

deactivated whenever the contaminant rises above the toxic
concentration of 0.05. All four of these parameters (with no
dimensions attached) were chosen for our convenience, so that
the behavior could be observed on a scale of 106 spills; the
parameters were fixed during each simulation.

3. Results

We examined only the cases with random branching fraction
Φ ) 0.0 (case 1),Φ ) 0.8 (case 2), andΦ ) 1.0; for the latter,
we examined only the cases with overload parameterΩ ) 8
andΩ ) 20 (cases 3 and 4, respectively). We always discarded
the results of the first 106 spills; all of the following results
were taken from subsequent runs of 8× 106 spills.

Cases 1-3 support divergent flow, while case 4 supports
convergent flow.5 One of the symptoms of convergent flow is
evident in Figure 3, where in the far right panel, there are
channels that each accumulates substantially more flow (as
indicated by the cumulative number of times a bucket was
tipped) than the lower-flux channels above them. The trap
population and the contaminant concentration in the drips,
though always fluctuating, achieved a steady state in less than
105 spills under these conditions; the steady-state dynamics for
each were essentially Brownian (or ARMA), since they possess
Hurst exponents in the range 0.45-0.55 (a Hurst exponent of
one-half corresponds exactly to Brownian motion).22 We
compared the results for the slow and fast degradation ratesγ

Figure 5. Snapshot of the distribution of traps. Panels (a-d) correspond to cases 1-4, respectively. The black pixel corresponds to the presence
of an active trap on the network at the end of the simulation. The left- and right-hand side of each panel corresponds to the low and high degradation
rate, respectively.

19660 J. Phys. Chem. B, Vol. 108, No. 51, 2004 LaViolette et al.



(see 2.B above) for each of cases 1-4. The resulting sample
means and standard deviations are listed in Table 1.

The fluctuations of the total amount of water in the system
were also large but were normally distributed for all cases
and were not included in Table 1; trapping does not affect
the distribution of the water, only of the contaminant. The
fluctuations of the steady-state trap populations are large but
normally distributed with one exception: in case 1, for the
fast degradation rate, its slightly asymmetric fluctuations are
much better approximated by the gamma distribution that
matches the first two moments, but we have no explanation
for this behavior, except that it was not the result of deviation
from the steady state. The trap population in case 4 changes
very little despite an order of magnitude increase in the
degradation rate, while the trap populations are signifi-
cantly affected by the change in degradation rates in the other
cases.

The contaminant concentrations in the drips are well ap-
proximated by the normal distribution for cases 1-3, as
indicated in Figure 4. As also indicated in Figure 4, for both
results in case 4, (shaded in Table 1), the first two moments
are not enough to characterize their distribution, which has a
long tail (that decays as either a stretched exponential or a power
law with an exponential rolloff),6 of the contaminant concentra-
tion. An order-of-magnitude increase in the decay rates lowers
the concentration in the drips by only about one-third for case
1; overloading in case 3 provides results similar to the maximally

connected case 1, while without significant overloading, case
4 produces an insignificant change in the contaminant concen-
tration in the drips even with an order of magnitude increase in
the decay rate. Increasing the degradation rate by an order of
magnitude for case 2 produces a decrease in the contaminant
concentration comparable to cases 1 and 3 but with much larger
fluctuations and therefore of less statistical significance. We
recall that cases 1-3 support diverging flow while case 4
supports converging flow.

The trap population results displayed in Table 1 do not show
their spatial distribution; these are represented in Figure 5 with
snapshots of the trap distributions for the four cases with the
two degradation rates. The introduction of the toxic threshold
accounts for the unoccupied space near the source of the
contaminant, where otherwise most of the traps would be found.
The traps with the lower degradation rates are the more widely
distributed, as expected.

The maximum contaminant concentration experienced by a
bucket during the simulation is presented in Figure 6. As in
Table 1, case 1 reflects the impact of the increased degradation
rate more strongly than case 2, while in case 4 there is no
discernible impact. Case 3 shows the importance of overloading
the minimally connected geometry, with which results similar
to those of case 1 are obtained. Cases 1-3 show that the
contaminant plume is effectively bounded or contained in
divergent flow, but case 4 shows that the contaminant plume is
not contained at all in the convergent flow.

Figure 6. Maximum concentration of contaminant. Panels (a-d) correspond to cases 1-4, respectively. The color legend in panel a is the same
for all the panels in this figure. The maximum concentration was recorded for each bucket before it tipped (if it tipped). The left- and right-hand
side of each panel corresponds to the low and high degradation rate, respectively.
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4. Conclusions

We simulated a chemical reaction network with feedback, in
a driven flow described by self-organized “tipping bucket”
model with distributed and dynamically overloaded thresholds.
We found here that an order-of-magnitude increase in the
degradation rate of the individual, dynamic traps in the flow
translated into much smaller increases in the overall reduction
of contaminant concentration in the exiting flow. The strongest
reductions in contaminant concentration, up to one-third, were
found in the systems (cases 1-3) that supported diverging flow,
while the weakest, almost negligible reduction was found in
the system (case 4) that supported converging flow.
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